Abstract

Proglacial fluvial sedimentary systems receive water from a variety of sources and have variable discharges with a range of magnitudes and frequencies. Little attention has been paid to how these various magnitude and frequency regimes interact to produce a distinctive sedimentary record in modern and ancient proglacial environments. This paper reviews the concept of magnitude and frequency in relation to proglacial fluvial systems from a geomorphic and sedimentary perspective rather than a hydrological or statistical perspective. The nature of the meltwater inputs can be characterised as low-magnitude–high-frequency, primarily controlled by ablation inputs from the source glacier, or high-magnitude–low-frequency, primarily controlled by ‘exceptional’ inputs. The most important high-magnitude–low-frequency inputs are catastrophic outburst floods, often referred to by the term jökulhlaup (Icelandic for glacier-burst). Glacier surges are an additional form of cyclical variation impacting the proglacial environment, which briefly alter the volumes and patterns of meltwater input. The sedimentary consequences of low-magnitude–high-frequency discharges are related to frequent variations in stage, the greater directional variability that sediment will record, and the increased significance of channel confluence sedimentation. In contrast, the most significant characteristics of high-magnitude–low-frequency flooding include the presence of large flood bars and mid-channel ‘jökulhlaup’ bars, hyperconcentrated flows, large gravel dunes, and the formation of ice-block kettle hole structures and rip-up clasts. Glacier surges result in a redistribution of low-magnitude–high-frequency processes and products across the glacier margin, and small floods may occur at the surge termination. Criteria for distinguishing magnitude and frequency regimes in the proglacial environment are identified based on these major characteristics. Studies of Quaternary proglacial fluvial sediments are used to determine how the interaction of the various magnitude and frequency regimes might produce a distinctive sedimentary record. Consideration of sandur architecture and stratigraphy shows that the main controls on the sedimentary record of proglacial regions are the discharge magnitude and frequency regime, sediment supply, the pattern of glacier advance or retreat, and proglacial topography. A model of sandur development is suggested, which shows how discharge magnitude and frequency, in combination with sandur incision and aggradation (controlled by glacier advance and retreat) can control sandur stratigraphy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call