Abstract

To establish volume imaging using an on-board cone-beam CT (CB-CT) scanner for evaluation of three-dimensional patient setup errors. The data from 24 patients were included in this study, and the setup errors using 209 CB-CT studies and 148 electronic portal images were analyzed and compared. The effect of rotational errors alone, translational errors alone, and combined rotational and translational errors on target coverage and sparing of organs at risk was investigated. Translational setup errors using the CB-CT scanner and an electronic portal imaging device differed <1 mm in 70.7% and <2 mm in 93.2% of the measurements. Rotational errors >2 degrees were recorded in 3.7% of pelvic tumors, 26.4% of thoracic tumors, and 12.4% of head-and-neck tumors; the corresponding maximal rotational errors were 5 degrees , 8 degrees , and 6 degrees . No correlation between the magnitude of translational and rotational setup errors was observed. For patients with elongated target volumes and sharp dose gradients to adjacent organs at risk, both translational and rotational errors resulted in considerably decreased target coverage and highly increased doses to the organs at risk compared with the initial treatment plan. The CB-CT scanner has been successfully established for the evaluation of patient setup errors, and its feasibility in day-to-day clinical practice has been demonstrated. Our results have indicated that rotational errors are of clinical significance for selected patients receiving high-precision radiotherapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.