Abstract
We show that a cylindrical lensing system composed of two metasurfaces with suitably tailored non-Hermitian (i.e., with distributed gain and loss) and nonlocal (i.e., spatially dispersive) properties can perform magnified imaging with reduced aberrations. More specifically, we analytically derive the idealized surface-impedance values that are required for "perfect" magnification and imaging, and elucidate the role and implications of non-Hermiticity and nonlocality in terms of spatial resolution and practical implementation. For a basic demonstration, we explore some proof-of-principle quasi-local and multilayered implementations, and independently validate the outcomes via full-wave numerical simulations. We also show that the metasurface frequency-dispersion laws can be chosen so as to ensure unconditional stability with respect to arbitrary temporal excitations. These results, which extend previous studies on planar configurations, may open intriguing venues in the design of metastructures for field imaging and processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.