Abstract

With the help of a magnetic fluid, researchers have designed surfaces with tunable friction, allowing them to control the movement of liquid droplets and other particles. Such surfaces could enable microfluidic devices controlled by magnetic fields (Nature 2018, DOI: 10.1038/s41586-018-0250-8). Harvard University’s Joanna Aizenberg and coworkers created the surfaces by infusing a ferrofluid—a suspension of magnetic particles in a variety of liquids—into a microstructured, porous epoxy surface. The team previously had made slippery liquid-infused porous surfaces, or SLIPS, by adding lubricants to similar porous solids. What’s different about these new surfaces—called ferrofluid-containing liquid-infused porous surfaces (FLIPS)—is that they allow researchers to control the distribution of the fluid within the structure with a magnetic field. A FLIPS surface is flat and slippery until researchers place a magnet nearby. The magnetic field pulls the ferrofluid and can make it form a variety of different config...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.