Abstract

High permittivity (BaxSr1−x)Ti1+yO3+z(BST) thin films are being investigated for integration into charge storage dielectrics and electric-field tunable elements for high frequency devices. For the latter application, it is desirable to have BST capacitors with high tunability and low losses. Therefore, we investigated the use of multilayer BST thin films consisting of very low dielectric loss BST/electrode interfacial layers ((Ba+Sr)/Ti = 0.73) sandwiching a high tunability, high permittivity primary BST layer ((Ba+Sr)/Ti = 0.9). BST capacitors with multiple layers of controlled composition can be effectively produced insitu by magnetron sputter deposition, using a single stoichiometric target and controlling the layer composition by changing the total process gas (Ar+O<2) pressure. The layered BST film capacitors exhibit simultaneous low loss (tan Δ = 0.005), high tunability (76%), high charge storage energy density (34 J/cm3), low leakage, and high dielectric breakdown (>2.8 MV/cm).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call