Abstract
This paper is intended to present the optimal design of a triode type magnetron injection gun (MIG) for a 300 kW, 30 A gyrotron traveling wave tube (gyro-TWT), which is operated at Q band fundamental TE01 mode. Based on the analysis of velocity ratio (VR) distribution along the emission strip (ES), a further optimization of cathode geometry on the basis of a preliminary optimized gun is performed, and a new cathode structure is proposed. Compared with initial optimal parameters, the new structure demonstrates a decline of transverse velocity spread (TVS) from 3.66% to 0.57% and longitudinal velocity spread (LVS) from 4.11% to 0.72%, while VR is maintained at 1.05. The achieved overall LVS reaches as low as 3.44% when considering cathode surface roughness and thermal temperature effect. The sensitivity study has been carried out by changing the gun parameters like anode voltage, beam current, and cathode magnetic field to ensure the practical operation stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.