Abstract

Suspensions of magnetic nanoparticles in suitable carrier liquids, denoted as ferrofluids, are in the focus of current research in the biomedical area. Those fluids can be potentially used for the treatment of cancer by coupling chemotherapeutic agents and accumulating them in the diseased region with the help of external magnetic fields or by artificially local induced heating. Those applications rely on the help of external magnetic fields, which are well known to drastically influence the physical behaviour of ferrofluids. This study investigates the changing viscosity of a biocompatible ferrofluid in a flow situation close to the situation found in a biomedical application. For this purpose blood as diluting agent and thin capillaries have been utilised. The strong magnetoviscous effects found lead to the assumption of quite big changes of the microstructure due to the external magnetic fields, which was investigated and quantified using a microscopic setup. In the result an increases of the structure size as well as faster structure formation in the stronger magnetic fields were observed. Moreover, with increasing duration of the applied magnetic field the size of the structures increases too. The observed process of the structure formation is reversible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call