Abstract

The hybrid graphene-quantum dot devices can potentially be used to tailor the electronic, optical, and chemical properties of graphene. Here, the low temperature electronic transport properties of bilayer graphene decorated with PbS colloid quantum dots (CQDs) have been investigated in the weak or strong magnetic fields. The presence of the CQDs introduces additional scattering potentials that alter the magnetotransport properties of the graphene layers, leading to the observation of a new set of magnetoconductance oscillations near zero magnetic field as well as the high-field quantum Hall regime. The results bring about a new strategy for exploring the quantum interference effects in two-dimensional materials which are sensitive to the surrounding electrostatic environment, and open up a new gateway for exploring the graphene sensing with quantum interference effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call