Abstract

We present an overview of magnetotransport measurements on the heavy-fermion superconductor CeIrIn5. Sensitive measurements of the Hall effect and magnetoresistance are used to elucidate the low-temperature phase diagram of this system. The normal-state magnetotransport is highly anomalous, and experimental signatures of a pseudogap-like precursor state to superconductivity, as well as evidence for two distinct scattering times governing the Hall effect and the MR, are observed. Our observations point out the influence of antiferromagnetic fluctuations on the magnetotransport in this class of materials. The implications of these findings, both in the context of unconventional superconductivity in heavy-fermion systems and in relation to the high-temperature superconducting cuprates, are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.