Abstract
Bismuth-containing compounds inherit the high spin-orbit coupling and bandgap bowing effects of the Bi atom. Here, we report the growth of InBi films using molecular beam epitaxy. By growing in a Bi-rich regime, we obtain coalesced and crystalline films with a sharp interface to the high-resistivity Si(111) substrate. Temperature-dependent transport and resistivity measurements exhibit a nonlinear Hall effect and parabolic magnetoresistance, suggesting two-carrier semimetallic behavior. In In-rich films, metallic temperature-dependent resistivity is observed. In Bi-rich films, we observed semiconductorlike temperature-dependent resistivity as well as superconductivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.