Abstract
Graphene-based van der Waals heterostructures take advantage of tailoring spin-orbit coupling (SOC) in the graphene layer by the proximity effect. At long wavelength-saddled by the electronic states near the Dirac points-the proximitized features can be effectively modeled by the Hamiltonian involving novel SOC terms and allow for an admixture of the tangential and radial spin-textures-by the so-called Rashba angle θ_{R}. Taking such effective models we perform realistic large-scale magnetotransport calculations-transverse magnetic focusing and Dyakonov-Perel spin relaxation-and show that there are unique qualitative and quantitative features allowing for an unbiased experimental disentanglement of the conventional Rashba SOC from its novel radial counterpart, called here the radial Rashba SOC. Along with that, we propose a scheme for a direct estimation of the Rashba angle by exploring the magneto response symmetries when swapping an in-plane magnetic field. To complete the story, we analyze the magnetotransport and spin-relaxation signatures in the presence of an emergent Dresselhaus SOC and also provide some generic ramifications about possible scenarios of the radial superconducting diode effect.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.