Abstract

It is shown that the magnetotransmission of unpolarized infrared radiation in the magnetostrictive crystal of CoFe2O4 ferrite spinel in the Faraday geometry can be as high as 30% at a magnetic field of 7.5 kOe. This effect is related to the field-induced shift of the fundamental absorption edge, as well as to changes in the intensity and positions of the impurity absorption bands. Correlation between the magnetic field dependence of magnetotransmission and magnetostriction is revealed. The contribution of the Faraday effect to the magnetotransmission is estimated. The analysis of magneto-optical and magnetoelastic characteristics taking into account the contribution of the deformation potential for the valence band is performed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.