Abstract

Bismuth ferric oxide (BFO) or bismuth ferrite is a multiferroic material with perovskite structure in which ferroelectric and antiferromagnetic orderings coexist. The magneto-electric coupling in this material makes it interesting from fundamental physics and applications points of view. As a result of complex magneto-elastic coupling and spin-glass behavior at low temperatures, the material exhibits a number of phase transitions driven by magnetic ordering. Earlier reports indicate that the primary order parameter in these transitions is not polarization but are related to magnon mode softening. In order to throw more light on the magneto-elastic and phonon related properties of this material, we measured the thermal transport properties, thermal conductivity and specific heat capacity, in the presence of an external magnetic field and compared the results with the zero field case. Results are reported for polycrystalline as well as nanocrystalline samples of BFO between 140K and 250K. A photopyroelectric thermal wave technique has been employed for the measurements. Anomalies in thermal properties observed at 140K, 200K and 240K in polycrystalline samples as well as their changes with applied field are explained in terms of magneto-elastic and spin–phonon couplings. It is found that the transitions get less well defined and one of the transition temperatures get shifted upwards considerably as the particle sizes are reduced to nanometer scales. Particle size dependences of phonon and magnon–phonon scattering are invoked to explain these results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call