Abstract

We conducted a broadband magnetotelluric (MT) survey along a north–south transect across Unzen graben, Japan. The MT survey line is located ~ 2 km west of the most recent lava dome and consisted of 27 stations along a 9-km profile. We estimated the 3-D resistivity structure and correlated it with the seismic reflection structure obtained by the same survey line as in the present study. The best-fit resistivity structure shows an upper resistive layer underlain by a moderately conductive layer. The resistive layer, which is interpreted as a cold groundwater zone, is cut by four faults marked by their relatively high conductivity. The underlying layer, which is interpreted as a hydrothermal-water-rich layer, also shows relatively conductive values near the faults. By assuming that the faults are imaged as relatively conductive zones, we infer the dip and depth extent of fracture zones around the faults. Beneath the Chijiwa Fault, which is the longest and most active fault of Unzen graben, the dominant conductor (C1) has a width of 2 km and extends down to below 4 km depth. C1 corresponds to a zone of strong seismic reflection and is located close to one of the pressure sources causing surface deformation. In this study, we interpret C1 as a network of fractures generated by the Chijiwa Fault to which magmatic volatiles are supplied from a deeper pressure source. Given that C1 extends to a greater depth and its resistivity is lower than other conductive zones, it is possible that earthquakes have occurred repeatedly on the Chijiwa Fault. In the center of the study area, we identify a vertically oriented body of high resistivity (R1) that corresponds to a zone of low seismic reflectivity. We interpret R1 as a cooled dyke complex that may have acted as a volcanic conduit.

Highlights

  • Unzen volcano, which is located on Shimabara Peninsula, Kyushu, Japan, is known for its remarkable 1991– 1995 eruptions that repeatedly generated pyroclastic flows via the collapse of gravitationally unstable, growing lava domes

  • The first layer is nearsurface high-resistivity zone that corresponds to a zone of cold groundwater with old Unzen deposits

  • The third layer is a bottom resistive zone related to the basement of the Unzen graben

Read more

Summary

Introduction

Unzen volcano, which is located on Shimabara Peninsula, Kyushu, Japan, is known for its remarkable 1991– 1995 eruptions that repeatedly generated pyroclastic flows via the collapse of gravitationally unstable, growing lava domes. MT and seismic reflections have been jointly interpreted in tectonically active or volcanic regions (e.g., Unsworth et al 1997; Brasse et al 2002; Comeau et al 2016), correlating resistivity structure with a seismic reflection profile at fine spatial resolution is rare, especially at shallow levels beneath a volcano. We show how these two physical properties correlate with each other and discuss the relationships between magma, faults, and hydrothermal systems.

Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.