Abstract

Electromagnetic signals in geophysics are frequently disturbed by various interference in field data acquisition. Denoising for passive electromagnetic methods such as magnetotelluric (MT) or audio magnetotelluric (AMT) data is significant to improve data quality and finally imaging to the geoelectrical structure. Conventionally, most denoising methods are employed in frequency domain and few of them are applied in time domain. However, a great number of irregular noise in the electromagnetic time series prove difficulty to be removed. We propose a denoising method, using Encoder-Decoder consisted of Long Short-Term Memory cells (ED-LSTM), to reduce the effect of the step noise and the random-impulsive noise. Supervised learning and transductive learning are used for the denoising of the step noise and the random-impulsive noise, respectively. Our results indicate that the step and random-impulsive noise could be successfully removed from the raw time series. The result indicate that ED-LSTM could potentially to be wildly used in the electromagnetic time series denoising and then improve data quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.