Abstract

The problem of expressing a general 3-D magnetotelluric (MT) impedance tensor in the form of a 2-D tensor that has been distorted in some way is addressed first in terms of a general theorem. This theorem shows that when the real and quadrature parts of a tensor are analyzed separately as distinct matrices, all that is necessary to make a matrix with 2-D characteristics from one with 3-D characteristics is to allow the electric and magnetic observing axes to rotate independently. The process is then examined in terms of the operations of twist and pure shear (“split”) on such matrices. Both of two basic sequences of split after twist, and twist after split, produce a typical 3-D matrix from one initially 1-D, with the parameters of split contributing 2-D characteristics to the final matrix. Taken in reverse, these sequences offer two basic paths for the decomposition of a 3-D matrix, and are seen to be linked to the initial theorem. The various operations on matrices are expressed diagrammatically using the Mohr circle construction, of which it is demonstrated two types are possible. Mohr circles of an observed MT tensor display all the information held by the tensor, and the two types of circle construction respectively make clear whether particular data are well suited to modeling by either split after twist, or twist after split. Generally, tensor decompositions may be displayed by charting their progress in Mohr space. The Mohr construction also displays the invariants of a tensor and shows that tensor decomposition can be viewed as a process of determining an appropriate set of invariants. An expectation that the origin of axes should be outside every circle categorizes as irregular any tensors which, in either the real or quadrature part, do not satisfy a [Formula: see text] criterion. The theory of the present paper applies equally to procedures for distorting 1-D and 2-D model calculations for the purpose of matching observed 3-D data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.