Abstract

In 1986/1987, 53 magnetotelluric soundings were carried out along the deep seismic reflection line DEKORP 2-N crossing the Munsterland basin and the Rhenish Massif. Examination of the data suggests one-dimensional interpretation to be appropriate for the Munsterland sites and still reasonable as an approximation for the major part of the Rhenish Massif sites. In some cases, the data are disturbed by man-made noise, in particular at the northern border of the Rhenish Massif, or affected by static shift distortion effects evidencing small scale, near surface electrical conductivity inhomogeneities. One-dimensional modeling for undistorted stations reveals a good conductor at a depth of 6–8 km in the Munsterland basin and at a depth of 14–16 km in the Rhenish Massif, shallowing to the north. Thus far, earlier MT results for these regions are largely corroborated. Comparison with reflection seismic results shows the conductor of the Rhenish Massif to coincide fairly well with a poorly reflective zone in the middle crust associated with strong reflectors at its upper and lower boundaries. The discussion of possibly responsible electrical conduction mechanisms considers electronic conduction to be most favorable for explanation of the Munsterland good conductor. Black shales with high organic content are regarded as being primarily capable of producing the observed high conductance because of adequate pre-graphitization of organic matter which may form a conducting network at conditions of very low grade metamorphism. In accordance with the crustal structure discernible from seismic reflections, an extension of this black shale horizon to the south into the Rhenish Massif is discussed. At the base of overthrusted rock masses it could have served as a gliding horizon during the Variscan folding era. Mobilization of its organic content and redeposition in shear zones would explain the good conductor of the Rhenish Massif by means of electronic conduction. Therefore, concurrence between the good conductor and strong seismic reflecting elements appears conceivable provided the latter represent shear zones as well. Electrolytic conduction, often supposed to be causative to high conductivity layers at midcrustal depths, would require considerable connected pore space. If the latter interpretation is correct the good conductor observed will indicate a recent thermal or extensional process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.