Abstract

We report on a recent magnetotelluric (MT) survey across the Manda Hararo magmatic segment (MHMS) within the Tendaho graben in the Afar Depression in northeastern Ethiopia. Twenty-two broadband MT sites with ∼1 km station spacing were deployed along a profile with the recorded data covering a period range from 0.003 s to 1000 s. A two-dimensional (2-D) resistivity model reveals an upper crustal fracture zone (fault) and partial melt with resistivity of 1–10Ωm at a depth of >1 km. The partial melt has a maximum horizontal width of 15 km and extends to a depth of 15 km within the Afar Stratoid Series basalts. We estimate a melt fraction of about 13% based on geochemical and borehole data, and bulk resistivity from the 2-D MT inversion model. The interpreted upper crustal partial melt may have been formed by either a magma intrusion from mantle sources or a large volume of continental crust that has been fluxed by a small amount of mantle melt and heat. Within the MHMS and Tendaho graben, a magma intrusion is a plausible explanation for the upper crustal conductor. The inferred presence of a conductive fracture zone or fault with hydrothermal fluid and shallow heat sourcing magma reservoir also makes the Tendaho graben a promising prospect for the development of conventional hydrothermal geothermal energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.