Abstract

Magnetic nanoparticles consisting of undecanoate-capped magnetite (average diameter ca. 5 nm) are used to selectively gate diffusional and surface-confined electrochemical reactions. A two-phase system consisting of an aqueous buffer solution and a toluene phase that includes the suspended undecanoate-capped magnetic nanoparticles is used to control the interfacial properties of the electrode surface. Two different phenomena are controlled by attraction of the magnetic nanoparticles to the electrode by means of an external magnet: (i) The attracted magnetic nanoparticles form a hydrophobic layer on the electrode surface resulting in the blocking of diffusional electrochemical processes, while retaining the redox functions of surface-confined electrochemical units. (ii) For certain surface-immobilized redox species (e.g., quinones), the attraction of the magnetic nanoparticles to the electrode surface alters the mechanism of the process from an aqueous-type electrochemistry to a dry organic-phase-type electrochemistry. Also, bioelectrocatalytic and electrocatalytic transformations at the electrode are controlled by means of attraction of the magnetic nanoparticles to the electrode surface. Controlling the catalytic functions of the modified electrode by means of the magnetic nanoparticles attracted to the electrode is exemplified in two different directions: (i) Blocking of the bioelectrocatalyzed oxidation of glucose by glucose oxidase (GOx) using a surface-confined ferrocene monolayer as electron-transfer mediator. (ii) Activation of the microperoxidase-11 electrocatalyzed reduction of cumene hydroperoxide. In the latter system, the hydrophobic magnetic nanoparticles adsorb toluene, and the hydrophobic matrix acts as a carrier for cumene hydroperoxide to the electrode surface modified with the microperoxidase-11 catalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.