Abstract
The influence of simultaneous substitution within the rare earth (R) and Co sublattices on the structural, magnetic, and magnetocaloric properties of the Laves phase RCo2-type compounds is studied. Main attention is devoted to the studies of the magnetostructural phase transitions and the transition types with respect to the alloy composition. Multicomponent alloys Tbx(Dy0.5Ho0.5)1−xCo2 and Tbx(Dy0.5Ho0.5)1−xCo1.75Al0.25 were prepared with the use of high purity metals. Majority of the Tbx(Dy0.5Ho0.5)1−xCo2 alloys exhibit magnetic transitions of the first-order type and a large magnetocaloric effect. The substitution of Al for Co in Tbx(Dy0.5Ho0.5)1−xCo2 increases the Curie temperature (TC) but changes the transition type from first-to the second-order. The discussion of the physical mechanisms behind the observed phenomena is given on the basis of the first principles electronic-structure calculations taking into account both the atomic disorder and the magnetic disorder effects at finite temperatures. The advantage of Al-containing materials is that sufficiently high magnetocaloric effect values are preserved at T > TC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.