Abstract

At cryogenic temperatures, single crystals of TbDy alloys exhibit giant magnetostrictions of nearly 9000 ppm, making these materials promising for engineering service in cryogenic actuators, valves, and positioners. The preparation of single crystals is difficult and costly. Preliminary results on the magnetostriction of textured polycrystalline materials are presented here. For instance, polycrystalline Tb0.60Dy0.40, plane-rolled (one direction of applied stress) to induce crystallographic texture, has shown magnetostrictions at 77 K of 3000 ppm for an applied field of 4.5 kOe and an applied load of 23 MPa, or 48% that of a single crystal under similar conditions. Comparisons are presented between the magnetostrictive response of plane- and form-rolled (two orthogonal directions of applied stress) polycrystalline Tb0.60Dy0.40 at 10 and 77 K. It is reported that at 10 K plane-rolled Tb0.60Dy0.40 exhibits 1600 ppm magnetostriction at an applied field of 4.4 kOe with a minimal applied load of 0.28 MPa. An observed restoration of the initial unstrained state may be a useful feature of polycrystalline materials for engineering service. Finally it is reported that thermal expansion measurements provide a measure of crystallographic texture for comparison with the magnetostriction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call