Abstract

A detailed knowledge of a material's microscopic texture is required in order to produce a realistic model of the magnetization process under applied fields. Previous studies on the magnetostriction in high strength steels have ignored the internal anisotropies due to prior material handling. To this end, a measurement utilizing two perpendicular fields was designed to interrogate the magnetic texture and microstructure of high-strength steel rods. These magnetization and magnetostriction measurements were then fitted to an energy-based domain rotation model which had been altered to address vector fields and uniaxial anisotropies. Given the simplicity of the model it is surprising to see that it captures a number of the general trends in the Data, however the fit is generally poor. Improving upon this data set will allow us to determine general magnetic characteristics of microstructure in the steels. These measurements will be incorporated into a future Vector Preisach model allowing detailed predictions of the magnetic state after stress and field changes in multiple directions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.