Abstract
Cardiac tissue engineering has great promise in the treatment of heart disease. Aiming to develop the novel magnetoelectric cardiac patch for improving the non-conduction of injured myocardium after myocardial infarction, the self-powered nanofiber sheet was electro-spun by doping magnetostrictive CoFe2O4 in piezoelectric Poly (vinylidene fluoride) (PVDF). The piezoelectric ratios increased several folds with the doping of CoFe2O4 due to the increased β phase and crystallinity of CoFe2O4-PVDF confirmed by experimental data. Molecular Dynamics and Finite Element Simulation demonstrated that non-β phase transformed to β phase of PVDF with doping CoFe2O4 and the deformation of CoFe2O4 enhanced the piezoelectric effect of PVDF, respectively. The proliferation and spread area of Doxorubicin-induced oxidative stress injured cardiomyocytes, H9c2 cells, were significantly improved under magnetoelectric cue compared with those without magnetoelectric cue when co-cultured with CoFe2O4-PVDF. Importantly, a new mechanism pathway of magnetoelectric cue on cardiomyocytes has been found, including up-regulating of steroid hormone biosynthesis, enhancing of sodium–potassium enzyme, and increasing of intracellular Ca2+, which would trigger the cardiomyocyte contraction to overcome the non-conduction of injured cardiomyocytes by RNA-seq transcriptome sequencing, Polymerase Chain Reaction and downstream expression analysis. Hence, this CoFe2O4-PVDF composite nanofiber sheet would be potentially used as the magnetoelectric cardiac patch to treat injured myocardium after myocardial infarction clinical.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.