Abstract

We study the linear and nonlinear evolution of a magnetostatic spin wave (MSW) in a charge free, isotropic ferromagnetic hollow nanotube. By analyzing the dispersion relation we observe that elliptically polarized forms of wave can propagate through the ferromagnetic nanotube. Using the multiple scale analysis we find that the dynamics of magnetization of the medium is governed by the cubic nonlinear Schr\"odinger equation. The stability of the continuous wave, related to the propagation of either bright or dark (MS) solitons in the nanotube, is governed by the direction of the external magnetic field relative to the magnetized nanotube.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.