Abstract

A physics based model for the coupled solar WIND–Magnetosphere–Ionosphere system (WINDMI) is described. The model is based on truncated descriptions of the collisionless microscopic energy transfer processes occurring in the quasineutral layer, and includes a thermal flux limit neglected in the Magnetohydrodynamic (MHD) closure of the moment equations. All dynamically relevant parameters of the model can be computed analytically. The system is both Kirchhoffian and Hamiltonian, ensuring that the power input from the solar wind is divided into physically realizable energy sub-components, a property not shared by data-based filters. The model provides a consistent mathematical formalism in which different models of the solar wind driver, ionospheric dissipation, global field configuration, and substorm trigger mechanism can be inserted, and the coupling between the different parts of the system investigated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call