Abstract
The interaction of black holes with ambient magnetic fields is important for a variety of highly energetic astrophysical phenomena. We study this interaction within the force-free approximation in which a tenuous plasma is assumed to have zero inertia. Blandford and Znajek used this approach to demonstrate the conversion of some of the black hole's energy into electromagnetic Poynting flux in stationary and axisymmetric single black hole systems. We adopt this approach and extend it to examine asymmetric and, most importantly, dynamical systems by implementing the fully nonlinear field equations of general relativity coupled to Maxwell's equations. For single black holes, we study, in particular, the dependence of the Poynting flux and show that, even for misalignments between the black hole spin and the direction of the asymptotic magnetic field, a Poynting flux is generated with a luminosity dependent on such misalignment. For binary black hole systems, we show both in the head-on and orbiting cases that the moving black holes generate a Poynting flux.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.