Abstract

Atomic force microscopy (AFM) was used in concert with transmission electron microscopy (TEM) to image magnetotactic bacteria (Magnetospirillum gryphiswaldense MSR-1 and Magnetospirillum magneticum AMB-1), magnetosomes, and purified Mms6 proteins. Mms6 is a protein that is associated with magnetosomes in M. magneticum AMB-1 and is believed to control the synthesis of magnetite (Fe3O4) within the magnetosome. We demonstrated how AFM can be used to capture high-resolution images of live bacteria and achieved nanometer resolution when imaging Mms6 protein molecules on magnetite. We used AFM to acquire simultaneous topography and amplitude images of cells that were combined to provide a three-dimensional reconstructed image of M. gryphiswaldense MSR-1. TEM was used in combination with AFM to image M. gryphiswaldense MSR-1 and magnetite-containing magnetosomes that were isolated from the bacteria. AFM provided information, such as size, location and morphology, which was complementary to the TEM images.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call