Abstract

We present analytical results concerning the magneto-roton instability in higher Landau levels evaluated in the single mode approximation. The roton gap appears at a finite wave vector, which is approximately independent of the LL index n, in agreement with numerical calculations in the composite-fermion picture. However, a large maximum in the static susceptibility indicates a charge density modulation with wave vectors $q_0(n)\sim 1/\sqrt{2n+1}$, as expected from Hartree-Fock predictions. We thus obtain a unified description of the leading charge instabilities in all LLs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.