Abstract

The magnetorotational instability of dusty plasmas is investigated using the multi-fluid model and the general dispersion relation is derived based on local approximation. The dust grains are found to play an important role in the dispersion relation in the low-frequency mode and exhibit destabilizing effects on the plasma. Both the instability criterion and growth rate are affected significantly by the dust and when the dust is heavy enough to be unperturbed, the reduced dispersion relations are obtained. The instability criteria show that the dust grains have stabilizing effects on the instability when the rotation frequency decreases outwards and conversely lead to destabilizing effects when the rotation frequency increases outwards. The results are relevant to accession and protoplanetary disks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call