Abstract

This paper presents an innovative solution for bounce reduction between a robotic leg and the ground by means of a semi-active compliant foot. The aim of this work is to enhance the controllability and the balance of a legged robot by improving the traction between the foot tip and the ground. The compliant foot is custom-designed for quadruped walking robots and it consists of a linear spring and a magnetorheological (MR) damper. By utilizing magnetorheological technology in the damper element, the damping coefficient of the compliant foot can be altered across a wide range without any additional moving parts. The content of this paper is twofold. In the first part the design, a prototype and a model of the semi-active compliant foot are presented, and the performance of the magnetorheological damper is experimentally studied in quasi-static and dynamic cases. Based on the quasi-static measurements, the damping force can be controlled in a range from 15 N to 310 N. From the frequency response measurements, it can be shown that the controllable damping force has a bandwidth higher than 100 Hz. The second part of this paper presents an online stiffness identification algorithm and a mathematical model of the robotic leg. A critical damping control law is proposed and implemented in order to demonstrate the effectiveness of the device that makes use of smart materials. Further on, drop tests have been carried out to assess the performance of the proposed control law in terms of bounce reduction and settling time. The results demonstrate that by real-time control of the damping force 98% bounce reduction with settling time of 170 ms can be achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.