Abstract

In this article, the servo property of a high-performance magnetorheological valve will be evaluated by closing the pressure feedback loop. The magnetorheological valve developed in this study has two separately controllable fluid flow channels and is especially designed for high-frequency applications. A state space model of the magnetorheological valve from the control signal to the pressure output will be identified, and the identified model is used for tuning a proportional–integral–derivative controller and for simulation of the closed-loop system. Finally, the controller will be implemented to a control computer, and the pressure output will be controlled in a real-time control loop. By analyzing the dynamic and static performance of the magnetorheological servo valve, it can be stated that the magnetorheological valve has a good potential for high-frequency pressure and force control applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.