Abstract

In recent times, controlling the performance of fluid film bearings smartly has become an important area for the fluid film bearing designers. This study deals with the numerical simulation of a magneto-rheological fluid–lubricated two-lobe hybrid slot-entry journal bearing. To make the operating condition more exact and realistic, the influence of geometric imperfection of the journal arising from manufacturing inaccuracies and thermal effect has been considered. Dave magneto-rheological fluid model, a constitutive relation of the Bingham model, and finite element method have been used in this article to simulate the behavior of the magneto-rheological fluid in a slot-entry bearing. The results indicate that the heat generated because of viscous friction rises the temperature of the magneto-rheological fluid, which changes the bearing performance significantly. Considering barrel-shaped journal and magneto-rheological fluid (applied current, Ic = 4 A), the performance of two-lobe slot-entry bearing is superior in terms of the value of [Formula: see text] approximately by a magnitude of 2%, 41%, 181%, 168%, 75%, and 41%, respectively, as compared to that of the base bearing (smooth [Formula: see text], two-lobe bearing, operating with a Newtonian fluid, Ic = 0 A).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.