Abstract

The copper cylindrical roller plays an important role in the printing operation. The copper roller requires fine and uniform finishing to uniformly distribute the colours and ingot material. Fine and uniform finishing of copper cylindrical rollers get difficulty using the traditional finishing processes due to their ductility and low hardness. Therefore, to achieve this fine finishing requirement, the rotary rectangular tool core-based magnetorheological (MR) finishing process is employed. Initially, the suitable MR polishing fluid composition is selected for the effective fine finishing of the surface of the copper cylindrical rollers. Furthermore, the central composite design is used to optimize the MR finishing process parameters. The surface roughness profiles, surface texture, and reflection tests are performed on the initial ground surface and the MR finished surface of the copper roller. The surface roughness value gets reduced from 190 nm to 25 nm after 4 hrs MR finishing with the optimum parametric conditions over the copper cylindrical roller surface having a dimension of 120 mm in length and 25 mm in diameter. The present MR finishing process found effective to significantly reduce the surface roughness value and enhance the surface characteristics of the copper cylindrical rollers. The geometrical dimensions in terms of circularity and straightness are also checked on the initial ground surface and finished surface of the copper cylindrical roller using the coordinate measuring machine and waviness test. The enhancement in surface characteristics, dimensional accuracy, and surface hardness after the present MR finishing process is found to be beneficial for improving the functional performance of the copper cylindrical rollers in the printing processing machine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call