Abstract

Optical fibers have been used massively in communications, specifically silica fibers for long‐distance communications and polymer optical fibers (POFs) for household use. Despite their numerous advantages, the use of optical fibers with high power signals can result in their permanent damage. In recent years, researchers have been studying this undesirable effect in order to develop optical fiber sensors for temperature and strain, but without fully understanding the fused material characteristics. Herein, the fused material in the POF is exhaustively studied by performing material and magnetic characterizations. The thorough material characterization allows to conclude that the fused fiber core is actually a fluorinated graphene oxide. Consequently, the POF fuse is revealed as an extremely easy and straightforward method to fabricate this material. It is also found that the fuse effect in POFs increases the magnetic susceptibility by almost 10 times, presenting a similar behavior to those of other fluorographene materials. Finally, a magnetic field sensor using the fused POF is developed, and a maximum sensitivity of 4.66 pm Oe−1 (for the range of 0–400 Oe) is obtained, which is one of the top records among the previous literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call