Abstract

A static tester for precision actuators is proposed. It is intended to test the functioning of future actuators to be used in hard drive read heads. The design allows a simple fabrication of a nanometer-scale position measurement system that can measure lateral, vertical, and angular displacements. The tester consists of (a) a reference magnetic layer of CoCrPt, (150×100μm2, 600nm thick) and (b) a sequence of four spin-valve sensors. The tested sensors have crossed anisotropies, 6.9% magnetoresistance with a linear response, 0.5%∕mT sensitivity, coercive field less than 0.1mT and resistance of 1680Ω in the parallel state. A noise level of 6nV∕√Hz was measured at thermal background for 0.2mA of applied current. The lateral displacement is measured by the two spin valves in the center. While the magnetic element is passing over these sensors, the measured signal on each of them varies in opposite directions, allowing a precise measurement of the center position. The two outer spin valves are sensitive to the angular orientation of the magnetic element. The relative movements of the spin valves and magnetic element are controlled by computer using piezoelectric crystals and step motors. Since the sensors are measuring the in-plane component of the field, the signal measured decreases rapidly with sensor-to-plane distance. An appropriate range for flight height is about 30μm. Simulations of the signal are in agreement with measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.