Abstract

Here we observed and studied pinned uncompensated magnetization in an antiferromagnet using magnetoresistance measurements. For this, we developed antiferromagnet-ferromagnet spin valves (AFSVs) that consist of an antiferromagnetic layer and a ferromagnetic one, separated by a nonmagnetic conducting spacer. In an AFSV, the uncompensated magnetization in the antiferromagnet affects scattering of spin-polarized electrons giving rise to giant magnetoresitance (GMR). By measuring angular dependence of AFSVs' resistance, we detected pinned uncompensated magnetization responsible for the exchange bias effect in an antiferromagnet- only exchange bias system Cu/FeMn/Cu. The fact that GMR measured in this system persists up to 110 kOe indicates that the scattering occurs on strongly pinned uncompensated magnetic moments in FeMn. This strong pinning can be explained if this pinned uncompensated magnetization is a thermodynamically stable state and coupled to the antiferromagnetic order parameter. Finally, using the AFSV technique, we confirmed that the two interfaces between FeMn and Cu are magnetically different: The uncompensated magnetization is pinned only at the interface with the bottom Cu layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call