Abstract

We investigate the electrical and magneto-transport properties of Pt–C granular metals prepared by focused electron beam induced deposition. In particular, we consider samples close to the metal–insulator transition obtained from as-grown deposits by means of a low-energy electron irradiation treatment. The temperature dependence of the conductivity shows a σ ∼lnT behavior, with a transition to at low temperature, as expected for systems in the strong coupling tunneling regime. The magnetoresistance is positive and is described within the wavefunction shrinkage model, normally used for disordered systems in the weak coupling regime. In order to fit the experimental data, spin-dependent tunneling has to be taken into account. In the discussion we attribute the origin of the spin-dependency to the confinement effects of Pt nano-grains embedded in the carbon matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.