Abstract

The conductivity of a two-dimensional electron gas in a parallel magnetic field is calculated. We take into account the magnetic-field-induced spin-splitting, which changes the density of states, the Fermi momentum, and the screening behavior of the electron gas. For impurity scattering, we predict a positive magnetoresistance for low electron density and a negative magnetoresistance for high electron density. The theory is in qualitative agreement with recent experimental results found for Si inversion layers and Si quantum wells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.