Abstract

SmB6, a topological Kondo insulator, with a gapped bulk state and metallic surface state has aroused great research interest. Here, we report an exotic hysteresis behavior of magnetoresistance in individual SmB6 nanowire in a temperature range in which both surface and bulk states contribute to the total conductance. Under a magnetic field parallel to the SmB6 nanowire, the resistance suddenly increases at the turning point from up-sweep to down-sweep of the magnetic field. The magnetoresistance hysteresis loops are well consistent with the magnetocaloric effect. Our results suggest that the SmB6 nanowires possess potential applications in the magnetic cooling technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call