Abstract

The mismatch in the crystal lattice parameters induces biaxial lateral compression of 35-nm La0.67Ba0.33MnO3 films coherently grown on neodymium gallate substrates. Mechanical stresses emerging during the nucleation and growth of the manganite layer facilitate the depletion of this layer in the alkali-earth element. This results in an increase in the unit cell volume in the grown films and a decrease in temperature T (M) at which the resistivity attains the maximal value. The extremal values of the negative magnetoresistance (MR a parts per thousand 17% for mu(0) H = 1 T) of the grown films are observed at temperatures close to room temperature. At T < T (M) , the response of the resistivity of the films to the magnetic field depends on the direction of this field relative to the normal to the substrate plane and to the direction of the measuring current. At T = 95 K, scattering of holes from 90A degrees-domain walls leads to an increase in the resistivity of the manganite films by approximately 1.1%, while the negative anisotropic magnetoresistance reaches 1.5%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.