Abstract

A comparative study of the longitudinal ρxx and transverse ρxy resistivities and magnetic susceptibility χac of La0.8Sr0.2MnO3 single crystals and ceramic samples has been conducted in a wide range of temperatures T=1.7–370 K and magnetic fields, H=0–13.6 T. It turned out that the relation ρxy∼ρxx, which is expected to hold in the case of carrier scattering by magnetic fluctuations, applies to the single crystals. In polycrystals, an additional H-dependent contribution to the resistivity tentatively attributed to plane (near grain boundaries) and bulk “defects” of the magnetic sublattice has been detected. The scattering of carriers by these defects does not make a notable contribution to the anomalous Hall effect and magnetic susceptibility χac. As a result, the curve of ρxy versus ρxx seems to be steeper than a linear dependence. Under the assumption that the materials under investigation are metals with constant carrier concentrations, the conductivity σ=1/ρxx due to the critical magnetic scattering calculated in the molecular field approximation reproduces the main features of experimental data, namely, the drop in the amplitude and shift of the resistivity peak near the Curie point with increasing magnetic field H and also a relatively slow change in the derivative dσ/dH with increasing temperature in the region T⩽TC. The large hole concentration of about two per unit cell derived from Hall measurements indicates that carriers of opposite signs can coexist in these materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.