Abstract

Cryptochromes are flavoproteins whose photochemistry is important for crucial functions associated with phototropism and circadian clocks. In this report, we, for the first time, observed a magnetic response of the cryptochrome 1 (CRY1) immobilized at a gold electrode with illumination of blue light. These results present the magnetic field-enhanced photoinduced electron transfer of CRY1 to the electrode by voltammetry, exhibiting magnetic responsive rate constant and electrical current changes. A mechanism of the electron transfer, which involves photoinduced radicals in the CRY, is sensitive to the weak magnetic field; and the long-lived free radical FAD•– is responsible for the detected electrochemical Faradaic current. As a photoreceptor, the finding of a 5.7% rate constant change in electron transfer corresponding to a 50 μT magnetic field may be meaningful in regulation of magnetic field signaling and circadian clock function under an electromagnetic field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call