Abstract

A mathematical model linking thermoelasticity to photothermal experiments is proposed with the consideration of the photothermal effect. The system equations for coupled plasma, heat conduction with phase-lags (PLs), and motion equations are introduced and solved by using the Laplace transform technique. The photothermal, thermal, and elastic waves in a rotating solid cylinder of semiconductor material are analyzed with the proposed model. The cylinder surface is constrained and subjected to a time-dependent pulse heat flux. The sensitivity of the physical fields for the angular velocity, PLs, and thermal vibration parameters is investigated. In addition, the effects of the effective parameters on the physical quantities are graphically illustrated and discussed in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call