Abstract
Functionalized magnetic beads offer promising solutions to a host of micro-total analysis systems ranging from immunomagnetic biosensors to cell separators. Immunochemical binding of functional biochemical agents or target biomolecules serves as a key step in such applications. Here we show how magnetophoretic motion of magnetic microspheres in a microchannel is harnessed to promote in situ immunochemical binding of short DNA strands (probe oligonucleotide) on the bead surface via streptavidin–biotin bonds. Using a transverse magnetic field gradient, the particles are transported across a co-flowing analyte stream containing biotinylated probe oligonucleotides that are labeled with a Cy3-fluorophore. Quantification of the resulting biotin–streptavidin promoted binding has been achieved through fluorescence imaging of the magnetophoretically separated magnetic particles in a third stream of phosphate buffered saline. Both the experimental and numerical data indicate that for a given flow rate, the analyte binding per bead depends on the flow fraction of the co-flowing analyte stream through the microchannel, but not on the fluid viscosity. Parametric studies of the effects of fluid viscosity, analyte flow fraction, and total flow rate on the extent of binding and the overall analyte separation rate are also conducted numerically to identify favorable operating regimes of a flow-through immunomagnetic separator for biosensing, cell separation, or high-throughput applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.