Abstract

Experimental and theoretical studies were carried out to investigate the spatial distribution of colloidal particles in magnetic fluids formed under the influence of magnetophoresis and gradient diffusion in a strong magnetic field. Several theoretical models, describing the equilibrium concentration profiles for rigid chain-like and quasispherical aggregates, are discussed. The experiment was made for four samples of magnetic fluids, differing in the average diameter of magnetic particles and the width of the particle size distribution. The analysis of the experimental data shows that the aggregates essentially change the concentration profile, making it nonlinear even in small (2 mm) magnetic fluid samples. Good agreement between the experimental and theoretical curves is observed in the case when the aggregates contain on the average 40–50 particles. The average diameter of single particles, calculated from the concentration profile curves, coincides with the average diameter, found from the magnetogranulometric analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.