Abstract

The asymmetric magnetization reversal in exchange biased Fe∕MnF2 involves coherent (Stoner-Wohlfarth) magnetization rotation into an intermediate, stable state perpendicular to the applied field. We provide here the experimentally tested analytical conditions for the unambiguous observation of both longitudinal and transverse magnetization components using the magneto-optical Kerr effect. This provides a fast and powerful probe of coherent magnetization reversal as well as its chirality. Surprisingly, the sign and asymmetry of the transverse magnetization component of exchange biased, low-anisotropy MnF2 and high-anisotropy FeF2 change with the angle between cooling and measurement fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.