Abstract

This article reports the magneto-optical effects on the singlet fission of the p-type organic semiconductor, tetracene, from a ferromagnetic/semiconductor interface between thin films of cobalt and tetracene. We experimentally show that this interface has two effects on the thin films of tetracene: spin interactions and electrical polarization. The experimental tools used to study the interface include magnetic field effect photoluminescence (MFEPL), photoluminescence and absorption. Spin interaction effects are shown by MFEPL data, where we observe a large increase in the maximum MFEPL when cobalt is introduced, as well as changes in the hyperfine interactions at low magnetic fields. Electrical polarization is analyzed with photoluminescence and absorption measurements, showing small changes in the energy difference between the HOMO and LUMO levels of tetracene, as well as an increase in the electron-phonon coupling in tetracene. Also, electrical polarization is shown to increase electrical interactions between tetracene molecules. Therefore, we conclude that using spin interactions and electrical polarization from the ferromagnetic/organic semiconductor interface can tune the properties of tetracene, ultimately enhancing singlet fission. This work gives new insight to understand the singlet fission process using a ferromagnetic interface. These changes can be further utilized in photovoltaic applications based on this singlet fission material and be applied to other similar types of singlet fission organic semiconductors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call