Abstract

Inertial Measurement Units (IMUs) are used to track the motion of kinematic chains in a wide variety of robotic and biomedical applications. However, inertial motion tracking is severely limited by the fact that magnetic fields are inhomogeneous in indoor environments and near electronic devices. Methods that use only accelerations and angular rates for orientation estimation yield no absolute heading information and suffer from heading drift. To overcome this limitation, we propose a novel method that exploits an orientation-based kinematic constraint in joints with two degrees of freedom (DoF), such as cardan joints, saddle joints, the human wrists, elbow or ankles. The method determines the relative heading of the joint segments in real time by minimization of a nonlinear cost function. A filter for singularity treatment ensures accurate tracking during motion phases for which the cost function minimum is ambiguous. We experimentally validate the method in metacarpophalangeal (MCP) joints between the palm and the fingers. Accurate relative orientation tracking is achieved continuously despite several singular motion phases and even though the heading components of the 6D orientations drift by more than 360 degrees within ten minutes. The proposed method overcomes a major limitation of inertial motion tracking and thereby facilitates the use of this technology in robotic and biomechanical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call