Abstract

A model has been developed to predict the magnetic induction, elastic and magnetostrictive strain and mechanical stress in a laminated structure with ferromagnetic and non-magnetic layers and subjected simultaneously to mechanical stress and magnetic field. This model was obtained by coupling classical laminated plate theory to an energy-based statistical magneto-mechanical model. The model can accommodate in-plane axial and shear forces as well as bending and twisting moments and can predict both in-plane axial and shear strains and stresses. A stress-dependent Young's modulus combined with an iterative algorithm was used to obtain non-linear magneto-mechanical response from a unimorph actuator and sensor. The effect of tensile and compressive bias force on actuator performance and the effect of DC magnetic bias field on sensor performance were studied. Possible applications areas for the model have been proposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call