Abstract

AbstractTemperature contrasts and magnetic field strengths of sunspot umbrae broadly follow the thermal-magnetic relationship obtained from magnetohydrostatic equilibrium. Using a compilation of recent observations, especially in molecular bands, of temperature contrasts of starspots in cool stars, and a grid of Kurucz stellar model atmospheres constructed to cover layers of sub-surface convection zone, we examine how the above relationship scales with effective temperature (Teff), surface gravity g and the associated changes in opacity of stellar photospheric gas. We calculate expected field strengths in starpots and find that a given relative reduction in temperatures (or the same darkness contrasts) yield increasing field strengths against decreasing Teff due to a combination of pressure and opacity variations against Teff.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call